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Abstract

In this paper we assess accuracy of some commonly used estimators of upper quantiles of a
right skewed distribution under both parameter and model uncertainty. In particular, for each of
log-normal, log-logistic, and log-double exponential distributions, we study the bias and mean
squared error of the maximum likelihood estimator (MLE) of the upper quantiles under both
the correct and incorrect model speci9cations. We also consider two data dependent or adaptive
estimators. The 9rst (tail-exponential) is based on 9tting an exponential distribution to the high-
est 10–20 percent of the data. The second selects the best 9tting likelihood-based model and
uses the MLE obtained from that model. The simulation results provide some practical guidance
concerning the estimation of the upper quantiles when one is uncertain about the underlying
model. We found that the consequences of assuming log-normality when the true distribution is
log-logistic or log-double exponential are not severe in moderate sample sizes. For extreme quan-
tiles, no estimator was reliable in small samples. For large sample sizes the selection estimator
performs fairly well. For small sample sizes the tail-exponential method is a good alternative.
Presenting it and the MLE for the log-normal enables one to assess the potential e=ects of model
uncertainty. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Estimation of upper quantiles of distributions is important in many applications. Es-
timates of the upper quantiles of the distribution of a risk factor or an exposure index
are commonly used to assess the risk to human health as a result of exposure to
chemicals and microbes in the environment, or to determine if concentration levels of
contaminants exceed speci9ed limits. Quantitative risk assessment using Monte Carlo
methods requires selection of appropriate probability distributions for the risk factors.
When the distribution of an important factor is modeled by an incorrect distribution,
inaccurate risk estimates may result. Haas (1997) discussed the importance of the dis-
tributional form when specifying inputs to Monte Carlo risk assessment. In particular,
he showed that the tail behavior of distributions from di=erent families with the same
mean and same variance may di=er substantially when the variance is large. He also
demonstrated that correctly identifying the true model with high probability requires
large sample sizes. These considerations indicate that quantile estimates may also be
sensitive to the assumed distributional form. Thus, it is important to examine the e=ects
of model selection, and mis-speci9cation on risk estimates. In this paper we investi-
gate the accuracy and robustness of certain quantile estimators under both correct and
incorrect model speci9cations.

The Safe Drinking Water Act requires the United State Environmental Protection
Agency (USEPA) to set drinking water standards to control the level of contaminants
in drinking water. The National Primary Drinking Water Regulations codify these en-
forceable standards. Such standards protect the public from the e=ects of contaminants
by limiting their levels in drinking water. Maximum Contaminant Level is the highest
level of a contaminant that USEPA allows in drinking water. The maximum contam-
inant levels for a host of microorganisms, disinfectants and disinfection by-products,
inorganic and organic chemicals, and radio nuclides have been established (USEPA,
2001).

The size of the environmental samples are usually small. Sampling for compliance
purposes, for example, may be required to be performed monthly or annually since
the sampling process may cause disruption in the plant operation. In some instances
measuring procedures and laboratory determinations for such substances in water, air,
or soil samples are expensive, leading to small-sized samples. For example, Frey and
Burmaster (1999) study estimates of the 95th percentile based on datasets of sizes 19,
9 and 5. Estimating upper quantiles based on small-to-moderate sample sizes cannot be
avoided as it may be mandated by regulation. For example, USEPA (1985) provides
guidance for setting and monitoring aquatic standards on toxic chemicals based on
the estimates of the 95th percentile. The upper quantiles are often used in regulatory
settings to reLect a degree of prudence in the decision-making process. This is espe-
cially true when the issues involved concern human health or the protection of natural
resources.

In this paper, we focus on continuous distributions. Let the probability and cumu-
lative distribution functions of Y be denoted by f and F , respectively. Then, the pth
quantile of Y is de9ned as QY (p)=F−1(p), which is the smallest y such that F(y)=p.
Since regulatory decisions rely on the upper tail of a distribution, we are concerned
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with estimating the upper quantiles and extreme upper quantiles of Y based on a ran-
dom sample y1; : : : ; yn of observations from the distribution of Y . We de9ne upper
quantiles to refer to quantiles that correspond to 0:906p¡ 0:99 and extreme upper
quantiles will refer to quantiles that are at or above the 99th percentile.

In a parametric approach, one assumes that the true distribution of Y belongs to a
family of distributions F = {f�(y); �∈�} indexed by a parameter �, which may be
vector-valued. Under such a model, the quantiles are functions of the parameters of
the model, and hence estimation of quantiles amounts to estimation of certain paramet-
ric functions, namely, estimation of QY (p) = F−1

� (p), where F�(p) is the cumulative
distribution function (CDF) of Y and � is the true value of the parameter. These quan-
tities can be estimated using the maximum likelihood method according to which the
estimate of QY (p) is Q̂(p) = F−1

�̂
(p), where �̂ is the MLE of � under the speci9ed

model F. It may be noted that estimation of upper and extreme quantiles is a diG-
cult task. Letting p = F(y) =

∫ y
−∞ f(t) dt, and y = F−1(p) = QY (p), it is seen that

dy=dp = dQY (p)=dp = 1=f(y). Therefore, the quantile values, QY (p), change very
rapidly with p when f(y) is small, i.e., in the upper and extreme upper tails of the
underlying distribution. Thus, for accurate estimation of upper and extreme quantiles
one needs very accurate estimate of the upper tail of the distribution. This is diGcult
as very few observations from the upper and extreme upper tails occur in modest sized
samples.

Usually, a parametric distributional model is chosen based on physical or biological
grounds (Kapteyn, 1903). For example, Ott (1995, Chapter 8) discusses the dilution
of pollutants in the environment and argues that repeated dilution of a contaminant
with water results in a gamma distribution. The log-normal distribution arises as the
product of many independent random factors (Aitchison and Brown, 1973). In such
cases, there is little uncertainty about the underlying distribution, and a suitable model
can be identi9ed a priori.

In many environmental applications, however, we do not have adequate physical,
biological, or empirical knowledge to suggest the functional form of the underlying
distribution, i.e., to suggest one distributional model. But, we may have enough knowl-
edge to suggest that the true distribution belongs to one of certain speci9c families.
In such cases, one may assume that F is a member of a set of parametric families
Fi ; i = 1; : : : ; k as in robustness studies (Gastwirth, 1966; Andrews et al., 1972). For
example, for unimodal and right skewed variables with unbounded support, one may
assume that the true distribution is either log-normal, or log-logistic, or log-double
exponential. Then, one may investigate the data by various exploratory techniques
(Hoaglin et al., 1983) and con9rmatory tests of hypotheses (D’Agostino and Stephens,
1986) in order to identify a single model that best describes the observations. That is,
the information provided by the sample may be used to identify a single best model
(Draper, 1995) as measured by some criteria. The investigation can be exploratory
or con9rmatory in nature. There are several techniques of model selection, including
optimal and sub-optimal invariant rules (Quesenberry and Kent, 1982), maximum like-
lihood rules (Dumonceaux and Antle, 1973; Kappenman, 1982), and rules based on
goodness-of-9t statistics (Dyer, 1973). Clearly, the choice of the methods and criteria
for data-based model selection involves some judgment.
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Alternatively, in the presence of model uncertainty one may use non-parametric es-
timators, which are based on minimal and mild assumptions regarding F , such as
continuity or existence of moments (Lehman, 1983). This avoids parametric model
selection which requires additional assumptions about the functional form of F . In
non-parametric approaches, the empirical distribution function, in various interpolated
forms, or a quasi-empirical distribution are used to estimate F . The estimated dis-
tribution function is then inverted to obtain quantile estimates. Speci9cally, we shall
consider quantile estimates that are based on the empirical quantile function, or the
tail-exponential method described in Section 3.

Generally, non-parametric estimators are less eGcient than parametric estimators
when the assumed parametric model is correct. Parametric estimators are more attrac-
tive when there is not much uncertainty about the model. They run the risk of being
inaccurate as the assumed model may not be the true model. However, the choice of
the model may or may not have crucial e=ects on the 9nal inferences. For example,
in the context of general linear models, McCullagh and Nelder (1989) and Aitchi-
son (1982) have suggested that assuming a log-normal distribution will in many cases
produce the same conclusions as assuming a gamma distribution. On the other hand,
Wiens (1999) showed that the two competing models, log-normal and gamma, yielded
di=erent conclusions in the analysis of the e=ects of an investigational vaccine. For
estimation in regression models with multiplicative errors, Firth (1988) showed that
maximum likelihood estimates based on gamma errors are more eGcient than those
based on a log-normal distribution under reciprocal misspeci9cation.

To examine the e=ects of model uncertainty, in this paper, we consider the log-normal,
log-logistic, and log-double exponential families, and investigate the properties of the
maximum likelihood estimators (MLE) of certain quantiles under both correct and in-
correct model speci9cations. For example, when the true distribution is log-normal, we
investigate the bias and mean squared error (MSE) of the maximum likelihood estima-
tors of quantiles derived under the assumption that the true distribution is log-normal
(i.e., under correct model speci9cation), as well as under the assumptions that the true
distribution is log-logistic, and log-double exponential, respectively (i.e., under incor-
rect model speci9cations). We focus on maximum likelihood estimators because they
are used frequently in practice. While some asymptotic properties of maximum like-
lihood estimators of quantiles under a mis-speci9ed general linear model have been
discussed by SPemPenou (1996), we investigate small sample properties by simulation.
We also compare the MLEs with non-parametric estimators, and a natural estimator.
For the last estimator we 9rst select a model, among log-normal, log-logistic, and
log-double exponential, and then calculate the MLE based on the selected model. In
this context, we select the model for which the maximized likelihood is the largest.
Thus, our selection estimator is also the MLE under the union of the three models. As
the selection estimator deals with both model and parameter uncertainty, it is expected
to have larger sampling variation than the MLE based on the correct model. Note that
if the correct model is identi9ed a priori, only uncertainty about the parameters leads
to error in estimation of QY (p). E=ects of model mis-speci9cation on the width and
coverage probability of con9dence intervals is also an important issue, but we do not
investigate it in this paper.
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In the next section, we review some basic properties of the log-normal, log-logistic,
and log-double exponential families of distributions. These three families are log-
symmetric, and have been found useful for modeling environmental data. Also, they
are location-scale families on the log scale. To compare the three families we study
their quantile plots simultaneously. Section 3 considers the empirical distribution func-
tion and discusses the tail-exponential method for estimating the upper values of the
quantile function. Section 4 describes a simulation study and compares the performance
of the quantile estimators. An example is discussed in Section 5. The 9nal section is
devoted to summary and recommendations.

2. Distributions

In this section, we discuss three symmetric location-scale distribution families on
the log scale. A location-scale family is obtained by considering location and scale
transformations of a random variable with a speci9ed distribution. Let Z be a random
variable with density fZ , distribution function FZ , and quantile function QZ(p). Con-
sider the transformation X = a + bZ; a∈R; b¿ 0. Then, it can be seen that X has
density fX (x) = 1=bfZ((x − a)=b), distribution function FX (x) = FZ((x − a)=b), and
quantile function QX (p) = a + bQZ(p). Further if the distribution of Z is symmetric
about zero, i.e., fZ(−z)=fZ(z) for all z, then the distribution of X is symmetric about
a, i.e., fX (a− t) = fX (a+ t) for all t. If Z is symmetric about 0, it also follows that
FZ(z) = 1 − FZ(−z) for all z, and QZ(p) = −QZ(1 − p) for all p. The parameters a
and b of a location-scale family determine the center, and the dispersion of the distri-
bution, respectively. The normal, logistic, and double exponential are three well-known
symmetric location-scale families of distribution.

We shall however, assume that the risk factor Y is such that the distribution of its
logarithm belongs to a symmetric location-scale family. Thus, Y= exp(X )= exp(a+bZ)
for some a∈R and b¿ 0, where Z has a known distribution which is symmetric
around 0. Being a continuous and increasing function, the exponentiation leads to
distributions that are unimodal and right skewed. This transformation alters the spacing
while preserving the order of the observations. It can be seen that Y has density fY (y)=
1=yfX (ln y) = 1=byfZ((ln(y) − a)=b), and quantile function QY (p) = exp(QX (p)) =
exp(a+ bQZ(p)). Thus, the distribution, the quantile function and other properties of
the distribution of Y can be obtained readily from the distribution of Z . We next
review some speci9c properties of three distribution families. As the interpretations of
the parameters a and b are di=erent for the three families, we express them in terms of
the mean �y and coeGcient of variation, �y =

√
Var(Y )=E(Y ) of Y . It may be noted

that under the assumption that log Y has a symmetric location-scale distribution, the
CV of Y depends only on the scale parameter b and not on the location parameter a.

2.1. Log-normal distribution

The log-normal distribution is basic in the modeling of environmental, economic,
and industrial observations. It has been used to 9t air quality data (Mage, 1981),
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Table 1
Log-normal properties

Distribution Log-normal

PDF, f(y) y = exp(x); x ∼ N (a; b2);

1
b
√

2�y
exp(−(lny−a)2

2b2 ); y¿ 0; b¿ 0

CDF, F(y)  ( ln(y)−a
b );  is the standard normal CDF

Quantile function, QY (p) exp(a+ b −1(p))

Mean, �y exp(a+ b2=2)

Variance, !2
y exp(2a+ b2)(exp(b2) − 1)

Skewness, "3 = �3=b3 (exp(b2) + 2)
√

exp(b2) − 1

CoeGcient of variation, �
√

exp(b2) − 1

log(likelihood) −n(ln b√2�) −∑n
i=1 ln yi − 1=2b2 ∑n

i=1 (ln yi − a)2

Parameter MLE â= 1=n ln yi and b̂
2

= 1=n(
∑n
i=1 ln2 yi − â2)

water consumption rates (Rosebury and Burmaster, 1992), and trace elements in human
tissue (Rustagi, 1964). Many exposure factors such as body weight as a function
of age (Burmaster and Crouch, 1997), total skin area as a function of body weight
(Burmaster, 1998), and 9sh consumption rates (Murray and Burmaster, 1994) have
also been modeled by log-normal distributions.

A random variable Y has a log-normal distribution if Y= exp(X ), and X has a normal
distribution. Here the parameters a and b are the mean � and standard deviation ! of X .
Standard calculations show that �y= exp(�+!2=2), and �y=

√
exp(!2) − 1 (see Table

1). So, for given �y and �y, the corresponding values of � and !2 are � = ln(�y) −
1
2 ln(�2

y+1), and !2 =ln(�2
y+1). The quantiles of log-normal distributions are obtained

from the quantiles of the standard normal distribution by noting that QY (p) = exp(�+
!Qz(p)), where Qz(p) = −1(p), and  −1(p) is the quantile function of the standard
normal distribution. This indicates that the upper quantiles of the log-normal distribution
are a=ected by the scale (!) of the underlying normal distribution. For further reviews
of this distribution we refer to Aitchison and Brown (1973), and Johnson et al. (1995).

2.2. Log-logistic distribution

The logistic distribution with location parameter a and scale parameter b has the
density function

f(x) =
exp[ − (x − a)=b]

b[1 + exp(−(x − a)=b)]2 ; −∞¡x¡∞; b¿ 0; −∞¡a¡∞:

One can show E(X ) = a and Var(X ) = b2�2=3 (see Table 2). The distribution of

Y = exp(X ) is given by

g(y) =
exp(a=b)y−(1=b)−1

b[1 + exp(a=b)y−1=b]2 ; y¿ 0:
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Table 2
Log-logistic properties

Distribution Log-logistic

PDF, f(y) y = exp(x); x ∼ L(a; b); b¿ 0
(1=b) exp(a=b)y−1=b−1(1 + exp(a=b)y−1=b)−2; y¿ 0

CDF, F(y) (1 + exp(a=b)y1=b)−1

Quantile function, Qy(p) exp(a)( p
1−p )b

Mean, �y b� exp(a) csc(b�)

Variance, !2
y b� exp(2a)(tan(b�) − b�) csc2(b�)

Skewness, "3 = �3=!3
y Note: E(yr) = (b�r) exp(ar) csc(b�r); r ¡ 1=b

CoeGcient of variation, �
√

1=(b�) tan b�− 1

log(likelihood) n(ln(1=b) + a=b) − (1=b+ 1)
∑n
i=1 ln yi

−2
∑n
i=1 ln(1 + exp(a=b)y−1=b

i )

Parameter MLE No closed form expression

It can be shown that E(Y r)=(�rb) exp(ra)csc(�rb); and �y=
√

1=�b tan(�b) − 1. Using
these relationships we can 9nd the values of a and b corresponding to given values
of �y and �y. For that we need to solve �2

y + 1 = (1=�b) tan(�b) for b and calculate
a= ln([�y=�b] sin(�b)). For further discussion of the log-logistic distribution we refer
to Johnson et al. (1995).

The log-logistic distribution has been used to model survival data (Bennett, 1983) and
business failure data (Dubey, 1966). The shape of the log-logistic distribution is similar
to a log-normal distribution as the normal and logistic distributions are very similar
in shape. Johnson et al. (1995) show that |[1 + exp(−�x=√3)]−1 − (16x=15)|¡ 0:01,
where [1 + exp(−�x=√3)]−1, and  (x) are the distribution functions of standard logis-
tic and standard normal distributions, respectively. They also suggest that, on suitable
occasions, the normal can replace the logistic to simplify the analysis. Due to their sim-
ilarity, statisticians often do not concern themselves with whether the normal or logistic
distributions underlie the data. It is also very diGcult to distinguish between these two
distributions at small sample sizes. Even though logistic provides a good approxima-
tion in the central part of the normal distribution, there can be substantial di=erences
in the upper and extreme upper quantiles. With a kurtosis of 4.2, the standard lo-
gistic distribution has a longer tail than the normal, which has kurtosis 3.0. In fact
the logistic distribution has been shown to be better approximated by a t distribution
with nine degrees of freedom (Mudholkar and George, 1978). Di=erences in the upper
quantiles of normal and logistic are further magni9ed when they are exponentiated to
get log-normal and log-logistic distributions.
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2.3. Log-double exponential distribution

The log-double exponential distribution is brieLy discussed in Johnson et al. (1995).
Let X have a double exponential distribution with location parameter a and scale
parameter b. That is

f(x) =
1
2b

exp(−|x − a|=b); −∞¡x¡∞; b¿ 0; −∞¡a¡∞:

The density function of Y = exp(X ) can be expressed as

g(y) =

{
1
2b exp(−a=b)y1=b−1 if 06y6 exp(a);
1
2b exp(a=b)y−1=b−1 if y¿ exp(a):

It is straight forward to verify that E(yr) = [1 − (rb)2]−1 exp(ra) for r ¡ 1=b, and
1 + �2

y = (%2 − 2%+ 1)=(%2 − 4%), where %= 1=b2. Then, letting k = 1 + �2
y we see that

(1 − k)%2 + (4k − 2)%+ 1 = 0

and the values of a, and b corresponding to given values of �y and �y are

b=

[
2 − 4k −

√
(4k − 2)2 − 4(1 − k)
2(1 − k)

]−1=2

and a= ln(�y(1 − b2)) (see Table 3).

Johnson (1949) discussed a system of three transformations, including a log trans-
formation, of normal and double exponential distributions. Tadikamalla and Johnson
(1982) discussed the same system of transformations applied to the logistic distribu-
tion. Log-double exponential distribution, also called log-Laplace distribution, has been
used to model dose-response data (Uppuluri, 1980).

To compare the three families of distributions Figs. 1–6 simultaneously plot their
quantile functions in the upper region (0:90¡p¡ 0:999) for several identical values
of the mean and CV. A change in the mean results in a shift in the plot but a change
in the CV changes the shapes of the graphs and the ordering of the extreme quantiles.
Examination of the three quantile functions Q(p) over the entire region of p indicate
that they are very close to each other over an interval (0; p1) of values of p. The
value of p1 depends on the CV and increases with the CV. For example, investigating
the entire range of p and several values of CV indicate that, the value of p1 is around
0.50 for CV = 0:1, and around 0.93 for CV = 10. As the value of p exceeds this value
p1, the quantile functions separate from each other. For small-to-moderate values of
the CV, the quantile functions cross each other again at a value p2, which is between
p1 and 1. The value of p2 also increases with the CV. For example, p2 is around
0.955 when the CV = 0:1, and around 0.998 for CV = 1. For much larger CV values
this crossing does not occur.

Figs. 1–4 show the di=erences among the upper and extreme quantiles (i.e., for p
between 0.90 and 0.999) of the log-normal, log-logistic, and log-double exponential
distributions for �y = 1, and CV = 0:1; 1. For the values of p that are between p1
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Table 3
Log-double exponential properties

Distribution Log-double exponential

PDF, f(y) y = exp(x); x ∼ DE(a; b)
1
2b exp(−a=b)y1=b−1; 06y6 exp(a)
1
2b exp(a=b)y−1=b−1; y¿ exp(a)

CDF, F(y) 1
2 exp(−a=b)y1=b; y¿ exp(a)

1 − 1
2 exp(a=b)y−1=b; y¿ exp(a)

Quantile function, QY (p) (2p exp(a=b))b; 06p6 1=2

(2(1 − p) exp(−a=b))−b; 1=26p6 1

Mean, �y (1 − b2)−1 exp(a); b¡ 1

Variance, !2
y exp(2a)((1 − 4b2)−1 − (1 − b2)−2); b¡ 2

Skewness, "3 = �3=!3
y Note: E(yr) = [(1 − (rb)2]−1 exp(ra); b¡ 1=r

CoeGcient of variation, �
√

(1−b2)2

1−4b2 − 1; b¡ 2

log(likelihood) −ln b− a=b+ (1=b− 1)ln yi − ln 2; 06y6 exp(a)

−ln b+ a=b− (1=b+ 1)ln yi − ln 2; y¿ exp(a)

Parameter MLE b̂= 1
n

∑n
i=0 |xi − â|

â= median(xi)

and p2, the quantiles for the log-normal are larger than the corresponding quantiles
under log-logistic, which in turn are larger than those for the log-double exponential.
This ordering is reversed for values of p that are larger than p2 when the crossing
takes place, i.e., for small values of the CV. Thus, for the same mean and CV, the
ordering of the quantiles Q(p) under the three models depends on p as well as the
CV. It is interesting to note that for small and moderate CV the log-double exponential
has the longest tail, and log-normal has the shortest tail but, this ordering is reversed
for large CV.

3. Empirical distribution function

Not knowing the general form of F , we would ideally like to 9nd accurate esti-
mates of QY (p) = F−1(y) for 0¡p¡ 1 under mild assumptions, such as existence
of moments, or continuity of F . In such settings, Fn(y) = 1=n#{yi6y}, the empirical
distribution function, is a natural estimator of F(y). This estimator places equal proba-
bility mass 1=n at each sample point yi and is the non-parametric maximum likelihood
estimate of F(y) (Efron and Tibshirani, 1993, p. 310).
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Fig. 1. Quantile Plots of LN, LL, and LDE : (CV = 0:1; 0:90¡p¡ 0:99).

Being more revealing for our purposes, the empirical distribution function (EDF)
can also be de9ned in terms of the ordered sample values y(1)¡y(2) · · ·¡y(n) as

Fn(y) =




0 if y¡y(1);
i
n if y(i)6y¡y(i+1);

1 if y¿y(n):

Direct inversion of the CDF is not very helpful for estimating the quantile function.
As F(n)(y) is a step function, its inverse F−1

n (p) exists only for a 9nite number of
values, p = i=n; i = 1; : : : ; n. Inversion of the EDF does not produce any estimate of
F−1(p) if p is not in the set 1=n; 2=n; : : : ; 1. It is necessary to use interpolation to get
estimates of F(p) for all values of p. For example, a linearly interpolated empirical
quantile function has the form

Qn(p) = y(i) + n(p− i=n)(y(i+1) − y(i));

where Qn(0) = 0, Qn(1) = y(n), and i is such that i=n6p¡ (i + 1)=n.
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Fig. 2. Quantile Plots of LN, LL, and LDE : (CV = 0:1; 0:99¡p¡ 0:999).

According to the EDF all the probability is concentrated between the minimum and
maximum of the sample observations. Thus, when estimating a true distribution by an
EDF we truncate the tails of the distribution, which alters the resulting estimates of
upper and extreme quantiles. In many cases the distribution of the observations in the
upper tail is well approximated by a two parameter exponential distribution. Motivated
by this fact, Breiman et al. (1979) proposed the tail exponential method for estimating
the upper quantiles. As discussed in Ott (1995), this method seeks to 9t an exponential
distribution to the upper r percent of the observations. Let yc =Qn(1− r), where r is a
speci9ed tail proportion, usually 10–20 percent. Assume that the conditional distribution
of Y given Y ¿yc is two parameter exponential with parameters yc and ". Then, for
y¿yc, the unconditional distribution function of Y is F(y)=1−r exp[−(x−xc)="], and
hence for p¿ 1−r the tail exponential quantile function is Qn(p)=yc−" ln((1−p)=r).
The parameter " of the tail exponential model is estimated as "̂= Ty c −yc where Ty c is
the mean of the observations above yc.
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Fig. 3. Quantile Plots of LN, LL, and LDE : (CV = 1:0; 0:90¡p¡ 0:99).

4. Simulation study

We performed a simulation study to assess the accuracy of upper and extreme up-
per quantile estimates for log-normal, log-logistic and log-double exponential distribu-
tions. For each model we considered the combinations of �y = 1; CV = [0:1; 1:0]; n=
[10; 30; 100; 1000], and p = [0:95; 0:99; 0:999]. In each case we generated 2000 sam-
ples of size n and estimated the pth percentile. Three of the estimates are the max-
imum likelihood estimates under the assumptions that the population distribution is
(i) log-normal, (ii) log-logistic, and (iii) log-double exponential, respectively. For the
log-normal distribution the log of the likelihood function is −n(ln b√2�)−∑n

i=1 ln yi−
1=2b2 ∑n

i=1 (ln yi − a)2. The log of the likelihood function for the log-logistic distri-
bution is n(ln(1=b) + a=b) − (1=b + 1)

∑n
i=1 ln yi and for the log-double exponential

distribution is −ln b− a=b+ (1=b− 1)ln yi − ln 2 if 06y6 exp(a) and −ln b+ a=b−
(1=b+ 1)ln yi − ln 2 if y¿ exp(a).
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Fig. 4. Quantile Plots of LN, LL, and LDE : (CV = 0:1; 0:99¡p¡ 0:999).

The maximum likelihood estimators of the parameters exist in closed form under a

log-normal distribution with â = 1=n ln yi and b̂
2

= 1=n(
∑n

i=1 ln2 yi − â2) and under
a log-double exponential distribution with b̂ = 1=n

∑n
i=0 |xi − â| and â = median(xi).

Clearly, in one of these three cases, the model is correctly speci9ed, and in the other
two cases the model is mis-speci9ed. We consider the three cases to assess parameter
uncertainty as well as e=ects of incorrect model speci9cation. The fourth estimator is a
non-parametric estimator. Table 4 speci9es the method of estimation as a function of n
and p, i.e., it speci9es when we use the empirical quantile function and when we use
the tail-exponential method. The 9fth estimator is the MLE based on a selected model.
In this approach, the selected model is the family, out of log-normal, log-logistic, and
log-double exponential, which has the largest maximized likelihood. This 9fth estimator
is also the MLE under the assumption that the true distribution is either log-normal or
log-logistic or log-double exponential.

The simulations were performed using SAS=IML. The inverse transformation method
was used to generate variates from the logistic and double exponential distributions.
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Fig. 5. Quantile Plots of LN, LL, and LDE : (CV = 10:0; 0:90¡p¡ 0:99).

Table 4
Methods of estimation used as a function of n and p. The empirical quantile function method is denoted by
EQ and TE stands for the tail-exponential method

p

n 0.95 0.99 0.999
1000 EQ EQ EQ
100 EQ EQ TE
30 EQ EQ TE
10 EQ TE TE

Uniform and normal variates were generated using Rannor and Ranuni functions of
SAS. The variates were exponentiated to generate values from LL, LN, and LDE
distributions. The MLEs of the parameters for log-logistic distribution are obtained
by applying the Newton–Raphson root 9nding procedure to the likelihood equations.
We use the criterion of bias and root mean squared error (RMSE) in order to assess
the accuracy of the estimates. The simulation results are presented in Tables 5–10.
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Fig. 6. Quantile Plots of LN, LL, and LDE : (CV = 10:0; 0:99¡p¡ 0:999).

The values of bias that are ¡ 5%; ¿ 25% and 50% of the true parameter values at
p= 0:95; 0:99 and 0:999 are marked with ∗; +, and ¿, respectively.

The 9rst blocks of numbers in Tables 5–10 correspond to the cases where the
true model is speci9ed correctly. As expected, the accuracy of the estimators gen-
erally increase as the sample size (n) increases and=or the CV decreases. Note that
as p increases, i.e., the quantiles become more extreme, the accuracy decreases. The
MLEs are not unbiased although the bias decreases to 0 as the sample size increases.
The direction and magnitude of bias depends on the speci9c combination. For small
CV (CV = 0:1) the biases are negative but quite small, and the RMSEs are also
fairly small. Also, for CV = 0:1, the MLE is most reliable, judged by both bias
and RMSE, for the log-normal model, and least reliable for log-double exponential
model. For larger CV, however, the biases are generally positive, and they increase
in magnitude as n decreases or the CV increases or p increases. Simulation experi-
ments with larger values of CV (CV = 10) indicate that the biases (and the RMSEs)
are severe for log-normal model unless n is large. Thus, when the CV is large and
the sample size is small or moderate, the MLE should not be used for estimating
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Table 5
Bias and RMSE of quantile estimators when the population distribution is log-normal with CV = 0:1

Parent Log-normal

CV = 0:1 p 0.95 0.99 0.999

Treated as Q 1.1724 1.2549 1.3542

n Bias RMSE Bias RMSE Bias RMSE

Log-normal 1000 0.000∗ 0.005 0:000∗ 0.007 −0:000∗ 0.010
100 −0:000∗ 0.017 −0:000∗ 0.023 0:000∗ 0.032
30 −0:002∗ 0.032 −0:000∗ 0.044 −0:000∗ 0.058
10 −0:001∗ 0.056 −0:005∗ 0.080 −0:009∗ 0.107

Log-logistic 1000 0:004∗ 0.007 0:037∗ 0.038 0.120 0.121
100 0:002∗ 0.019 0:037∗ 0.046 0.119 0.127
30 0:000∗ 0.035 0:032∗ 0.060 0.111 0.136
10 −0:006∗ 0.056 0:022∗ 0.092 0.091 0.165

Log-DE 1000 0:022∗ 0.023 0.103 0.103 0.277 0.278
100 0:022∗ 0.031 0.098 0.105 0.270 0.277
30 0:017∗ 0.043 0.098 0.117 0.259 0.284
10 0:009∗ 0.066 0.077 0.135 0.233 0.305

EDF 1000 −0:000∗ 0.007 −0:002∗ 0.014 −0:017∗ 0.037
100 −0:005∗ 0.023 −0:021∗ 0.043 0:033∗ 0.082
30 −0:003∗ 0.042 −0:032∗ 0.073 0:031∗ 0.140
10 −0:008∗ 0.069 −0:012∗ 0.129 0:027∗ 0.246

Selected 1000 0:000∗ 0.005 0:000∗ 0.005 0:000∗ 0.015
100 0:000∗ 0.018 0:004∗ 0.028 0:018∗ 0.058
30 −0:001∗ 0.032 0:010∗ 0.052 0:034∗ 0.102
10 −0:006∗ 0.061 0:003∗ 0.087 0:040∗ 0.151

∗Values of bias that are ¡ 5%; ¿ 25% and 50% of the true value are marked with ∗; +, and ¿,
respectively.

the upper and extreme quantiles. One should use other estimators with no or smaller
bias.

We next consider the second and third blocks in Tables 5–10 to discuss the e=ect
of model mis-speci9cation. The results for n = 1000 exhibit the systematic e=ect of
mis-speci9cation as the sampling variability in this case is rather small. When the true
distribution is log-normal, from Tables 5 and 6 we see that modeling the data using
a log-logistic or log-double exponential distribution usually results in a positive bias.
Interestingly, for p=0:95 and n6 100, the bias and RMSE values under the log-logistic
assumption are similar to the corresponding values under the correct assumption of
log-normality. Thus, mis-speci9cation of a log-normal model by a log-logistic does not
seem to have serious consequences for estimating the 95th percentile, unless the sample
size is very large. For larger values of p, this mis-speci9cation substantially reduces
the accuracy of the estimates. Further, the bias and RMSE increase as p and=or the
CV increase. When the data follow a log-normal model, the e=ects of wrongly using
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Table 6
Bias and RMSE of quantile estimators when the population distribution is log-normal with CV = 1

Parent Log-normal

CV = 1:0 p 0.95 0.99 0.999

Treated as Q 2.7811 4.9049 9.2647

n Bias RMSE Bias RMSE Bias RMSE

Log-normal 1000 0.003∗ 0.108 0:013∗ 0.243 0:024∗ 0.59
100 0:019∗ 0.367 0:037∗ 0.814 0:080∗ 1.91
30 0:053∗ 0.687 0:108∗ 1.537 0.49 3.87
10 0:106∗ 1.273 0.448 3.292 1.56 9.21

Log-logistic 1000 0:094∗ 0.157 1:397+ 1.444 9:704¿ 9.833
100 0:096∗ 0.395 1:376+ 1.790 9:796¿ 11.02
30 0:052∗ 0.701 1:644+ 2.618 10:54¿ 14.38
10 0:079∗ 1.293 1:556+ 4.678 12:68¿ 29.79

Log-DE 1000 0.480 0.505 4:650¿ 4.702 34:69¿ 34.99
100 0.477 0.710 4:619¿ 5.104 35:43¿ 38.63
30 0.443 1.019 4:676¿ 6.194 36:80¿ 48.44
10 0.547 1.946 5:436¿ 10.41 46:91¿ 102.4

EDF 1000 −0:005∗ 0.149 −0:052∗ 0.461 −0:84 2.03
100 −0:061∗ 0.476 −0:534∗ 1.382 −1:81 2.83
30 0:066∗ 0.975 −0:244∗ 2.081 −1:75 4.04
10 0:104∗ 1.770 −0:503∗ 3.698 −2:21 7.64

Selected 1000 0:000∗ 0.113 0:010∗ 0.262 0:080∗ 0.952
100 0:014∗ 0.355 0:248∗ 1.024 1.92 5.623
30 0:032∗ 0.650 0.494 2.021 4:36+ 12.486
10 0:069∗ 1.261 1.018 4.148 7:88¿ 30.10

∗Values of bias that are ¡ 5%, ¿ 25% and 50% of the true value are marked with ∗;+, and ¿,
respectively.

log-double exponential distribution are generally much more serious than using the
log-logistic to 9t the data.

The bias due to mis-speci9cation of a log-logistic distribution by log-normal, reported
in Tables 7 and 8, depends on the values of p and CV. When the CV = 0:1, they
are generally negative, but when the CV = 1:0, they are negative for p = 0:99; 0:999
and positive for p = 0:95. For n = 1000 these biases are generally quite large, and
the RMSEs are much larger than the RMSEs of the MLE under the correct assump-
tion of log-logistic distribution. However, for smaller sample sizes the RMSE values
are fairly comparable. Interestingly, the RMSEs under the log-normal assumption are
smaller than the RMSEs under log-logistic assumption for n= 10; 30; p= 0:99; 0:999,
and CV = 1:0. Thus, assuming log-normality when the true distribution is log-logistic
does not appear to have a major impact on the estimates of the upper and extreme
quantiles in samples of size n6 30. In contrast, the assumption of log-double expo-
nential generally induces positive biases, whose magnitude tend to increase with CV
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Table 7
Bias and RMSE of quantile estimators when the population distribution is log-logistic with CV = 0:1

Parent Log-logistic

CV = 0:1 p 0.95 0.99 0.999

Treated as Q 1.1693 1.2800 1.4529

n Bias RMSE Bias RMSE Bias RMSE

Log-logistic 1000 −0:000∗ 0.006 −0:000∗ 0.009 −0:000∗ 0.015
100 −0:000∗ 0.018 −0:001∗ 0.028 −0:001∗ 0.048
30 −0:003∗ 0.035 −0:004∗ 0.053 −0:007∗ 0.088
10 −0:010∗ 0.062 −0:016∗ 0.094 −0:027∗ 0.148

Log-normal 1000 0.002∗ 0.006 −0:025∗ 0.027 −0:099 0.100
100 0.000∗ 0.020 −0:027∗ 0.039 −0:100 0.108
30 −0:001∗ 0.037 −0:030∗ 0.060 −0:100 0.124
10 −0:002∗ 0.064 −0:034∗ 0.096 −0:105 0.167

Log-DE 1000 0.015∗ 0.017 0.059∗ 0.060 0.142 0.143
100 0.014∗ 0.026 0.056∗ 0.067 0.140 0.154
30 0.010∗ 0.040 0.051∗ 0.083 0.129 0.176
10 0.005∗ 0.065 0.035∗ 0.117 0.103 0.234

EDF 1000 −0:000∗ 0.009 −0:003∗ 0.021 0.013∗ 0.070
100 −0:005∗ 0.028 −0:027∗ 0.065 −0:013∗ 0.106
30 0.000∗ 0.053 −0:006∗ 0.100 −0:023∗ 0.198
10 −0:028∗ 0.075 −0:031∗ 0.164 −0:027∗ 0.336

Selected 1000 −0:000∗ 0.005 −0:000∗ 0.010 −0:000∗ 0.018
100 0.000∗ 0.020 −0:003∗ 0.039 −0:016∗ 0.095
30 −0:001∗ 0.037 −0:0102∗ 0.066 −0:030∗ 0.131
10 −0:011∗ 0.062 −0:020∗ 0.098 −0:055∗ 0.181

∗Values of bias that are ¡ 5%, ¿ 25% and 50% of the true value are marked with ∗; +, and ¿,
respectively.

and p. Their overall properties are markedly inferior except possibly for CV = 0:1
and p= 0:95:

Tables 9 and 10 report the e=ects of mis-speci9cation of a true log-double expo-
nential distribution. The MLEs under log-logistic assumption are negatively biased, but
their RMSEs are close to the RMSEs under log-double exponential for small-to-moderate
sample sizes. Actually, for n6 30, the RMSEs under mis-speci9cation by log-logistic
are mostly smaller than the RMSEs under the correct assumption of log-double ex-
ponential distribution. Mis-speci9cation by the log-normal leads to negative biases for
p = 0:99 and 0.999; for p = 0:95, they are positive for CV = 1. The RMSEs are
close (and even smaller in several cases) to those under the correct assumption for
smaller (n6 30) sample sizes and p6 0:99. When p = 0:999, however, the nega-
tive bias remained and the RMSEs were high regardless of which model was 9t. The
log-normal mis-speci9cation is slightly worse than the log-logistic mis-speci9cation.
Overall, mis-speci9cation of log-double exponential by log-normal or log-logistic is
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Table 8
Bias and RMSE of quantile estimators when the population distribution is log-logistic with CV = 1

Parent Log-logistic

CV = 1:0 p 0.95 0.99 0.999

Treated as Q 2.3507 4.3369 10.224

n Bias RMSE Bias RMSE Bias RMSE

Log-Logistic 1000 0.003∗ 0.081 0.007∗ 0.221 0.003∗ 0.71
100 0.007∗ 0.263 0.025∗ 0.719 0.079∗ 2.34
30 0.014∗ 0.494 0.015∗ 1.296 0.424∗ 4.83
10 −0:021∗ 0.910 0.104∗ 2.665 1.63 14.8

Log-normal 1000 0.038∗ 0.097 −0:569 0.597 −3:900+ 3.92
100 0.033∗ 0.294 −0:529 0.803 −3:833+ 4.04
30 0.062∗ 0.541 −0:416 1.271 −3:070+ 4.511
10 0.093∗ 0.989 −0:227 2.656 −2:814+ 8.076

Log-DE 1000 0.231 0.253 1.574 1.612 9:092¿ 9.258
100 0.220 0.395 1.542 1.885 9:286¿ 11.01
30 0.234 0.649 1.597 2.635 10:30¿ 16.26
10 0.257 1.163 1.690 4.853 12:54¿ 34.27

EDF 1000 −0:002∗ 0.128 −0:043∗ 0.519 −1:04 3.34
100 −0:053∗ 0.444 −0:418 1.416 −3:39+ 5.22
30 0.100∗ 0.953 −0:065∗ 3.395 −3:33+ 6.43
10 −0:062∗ 1.510 −0:442 4.308 −4:06+ 8.60

Selected 1000 −0:000∗ 0.085 −0:004∗ 0.224 −0:022∗ 0.870
100 0.027∗ 0.294 −0:002∗ 1.026 −0:053∗ 4.847
30 0.006∗ 0.524 −0:060∗ 1.611 0.301∗ 8.510
10 0.003∗ 0.958 0.040∗ 2.808 0.576 17.06

∗Values of bias that are ¡ 5%, ¿ 25% and 50% of the true value are marked with ∗; +, and ¿,
respectively.

fairly innocuous for estimating upper percentiles from small or moderate sized data
sets.

Considering e=ects of all incorrect speci9cations of the model, we conclude that when
the sample size is not very large, the assumption of log-normality is fairly harmless
for estimating upper percentiles. Extreme upper percentiles are diGcult to estimate
accurately even when one knows the correct underlying model. When the sample size
is large, signi9cant biases result from assuming an incorrect model. In such cases,
however, it is much easier to identify the correct model using goodness of 9t tests or
the selected estimator can be used.

Now we discuss the behavior of the EDF estimator. Expectedly, the RMSE values
are fairly large in the cases where the fully non-parametric method has been used
(see Table 4). They are mostly larger than the RMSE values under the log-normal
assumption, even when that assumption is not correct. However, the tail exponential
approach performs fairly well for log-normal and log-logistic distributions, especially
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Table 9
Bias and RMSE of quantile estimators when the population distribution is log-double exponential with CV=0:1

Parent Log double-exponential

CV = 0:1 p 0.95 0.99 0.999

Treated as Q 1.1689 1.3082 1.5367

n Bias RMSE Bias RMSE Bias RMSE

Log-DE 1000 −0:000∗ 0.006 −0:000∗ 0.011 0.000∗ 0.021
100 −0:000∗ 0.021 −0:000∗ 0.037 −0:001∗ 0.069
30 −0:002∗ 0.038 −0:004∗ 0.067 −0:005∗ 0.118
10 −0:007∗ 0.068 −0:013∗ 0.118 −0:015∗ 0.221

Log-logistic 1000 −0:011∗ 0.012 −0:047∗ 0.048 −0:116 0.117
100 −0:011∗ 0.023 −0:047∗ 0.057 −0:116 0.128
30 −0:011∗ 0.037 −0:051∗ 0.077 −0:127 0.158
10 −0:018∗ 0.066 −0:064 0.116 −0:131 0.211

Log-normal 1000 0.001∗ 0.007 −0:055∗ 0.056 −0:185 0.186
100 0.000∗ 0.0237 −0:056∗ 0.067 −0:186 0.192
30 −0:000∗ 0.043 −0:059 0.084 −0:192 0.211
10 −0:005∗ 0.072 −0:068 0.126 −0:202 0.250

EDF 1000 −0:000∗ 0.011 −0:004∗ 0.028 −0:043∗ 0.097
100 −0:006∗ 0.035 −0:034∗ 0.080 −0:040∗ 0.142
30 0.002∗ 0.065 −0:014∗ 0.123 −0:045∗ 0.252
10 −0:021∗ 0.092 −0:031∗ 0.224 −0:059∗ 0.437

Selected 1000 0.000∗ 0.006 −0:000∗ 0.011 0.000∗ 0.021
100 −0:003∗ 0.021 −0:005∗ 0.0245 −0:026∗ 0.088
30 −0:007∗ 0.039 −0:032∗ 0.0786 −0:073 0.160
10 −0:017∗ 0.068 −0:051∗ 0.126 −0:122 0.246

∗Values of bias that are ¡ 5%, ¿ 25% and 50% of the true value are marked with ∗; +, and ¿,
respectively.

for large CV. But, it does not work well for log-double exponential distribution. In that
case, even the MLE under the incorrect assumption of log-normality performs better.

Finally, we discuss performance of the selection estimator, which is the MLE under
the selected model. The selection probabilities of di=erent families, for di=erent true
distributions with CV = 1, are presented in Table 11. We report them only for CV = 1
as they changed very little with the CV. For n= 1000, the true model is selected with
probability at least 0.98, and hence the resulting estimator generally performs almost as
well as the MLE under the correct distribution. Only for log-normal data with CV=1:0,
the estimators of 99th, and 99.9th percentiles have noticeably larger RMSE than the
MLE for the log-normal. For n6 100, its performance is roughly comparable to the
MLE under the log-normal assumption; neither one is uniformly better than the other.

Based on the simulation results we come to the following conclusions. For large
n, we suggest using the data to select a model, and then estimate the quantiles based
on the selected model. For smaller sample sizes it is diGcult to identify the correct
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Table 10
Bias and RMSE of quantile estimators when the population distribution is log-double exponential with CV=1

Parent Log double-exponential

CV = 1:0 p 0.95 0.99 0.999

Treated as Q 2.1180 4.0504 10.2410

n Bias RMSE Bias RMSE Bias RMSE

Log-DE 1000 −0:001∗ 0.068 −0:000∗ 0.20 0.018∗ 0.81
100 −0:006∗ 0.218 −0:001∗ 0.66 0.222∗ 2.74
30 −0:008∗ 0.418 0.079∗ 1.42 0.761 6.23
10 −0:000∗ 0.781 0.250 2.87 2.80+ 16.7

Log-logistic 1000 −0:112 0.130 −0:775 0.790 −3:73+ 3.76
100 −0:116 0.234 −0:773 0.911 −3:63+ 3.90
30 −0:093∗ 0.393 −0:702 1.194 −3:46+ 4.57
10 −0:086∗ 0.7301 −0:691 2.042 −2:81+ 7.80

Log-normal 1000 0.020∗ 0.081 −0:890 0.905 −5:36¿ 5.37
100 0.017∗ 0.255 −0:889 1.023 −5:32¿ 5.423
30 0.035∗ 0.504 −0:884 1.297 −5:22¿ 5.642
10 0.062∗ 0.993 −0:708 2.729 −4:77+ 7.138

EDF 1000 −0:005∗ 0.11 −0:059∗ 0.52 −1:01 3.93
100 −0:066∗ 0.36 −0:380 1.58 −3:79+ 4.79
30 0.090∗ 0.79 −0:222 2.71 −3:83+ 7.07
10 −0:041∗ 1.36 −0:445 4.16 −4:33+ 9.18

Selected 1000 0.000∗ 0.065 0.000∗ 0.213 0.001∗ 0.847
100 −0:027∗ 0.224 −0:159∗ 0.739 −0:468∗ 3.133
30 −0:046∗ 0.407 −0:336 1.321 −1:136 5.950
10 −0:062∗ 0.755 −0:465 2.403 −2:153 11.75

∗Values of bias that are ¡ 5%, ¿ 25% and 50% of the true value are marked with ∗; +; and ¿,
respectively.

Table 11
Selection probabilities for the parent distribution with CV = 1

Parent LL LN LDE

Selected LL LN LDE LL LN LDE LL LN LDE
n
1000 0.99 0.01 0.00 0.01 0.99 0.00 0.00 0.00 1.00
100 0.53 0.31 0.16 0.16 0.83 0.11 0.13 0.02 0.85
30 0.23 0.50 0.27 0.12 0.76 0.12 0.16 0.18 0.66
10 0.07 0.60 0.33 0.06 0.70 0.24 0.07 0.43 0.50

model (see Table 11 and Haas, 1997), and hence one cannot rely on the estimates
derived under the selected model. In such cases, one should try to choose a model by
examining the subject matter and related studies. If one has considerable uncertainty
about the correct model, we believe one should obtain multiple estimates using di=erent
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Table 12
Nickel concentrations (ppb) at four monitoring wells, USEPA (1992)

Observations (n= 20)

58.8 1.0 262.0 56.0 8.7 19.0 81.5
331.0 14.0 64.4 39.0 151.0 27.0 21.4
578.0 3.1 942.0 85.6 10.0 637.0 —

Summary statistics

Min Max Mean SD Med. Skew. Kurt.
1.0 942.0 169.52 259.7 57.4 2.0 3.41

methods. For moderate sample sizes, the MLE under the log-normal assumption, and
the selection estimates appear to be two reasonable alternatives. For small sample
sizes, selection estimates are unreliable, especially for large p. For estimating upper
and extreme quantiles based on a small sample (n6 30), we suggest reporting the tail
exponential estimates, and the MLE under the log-normal assumption. The inherent
model uncertainty should be reLected in the di=erences between them.

5. An example

Nickel is a metal found only in combined form in nature. Used in electronics in-
dustry, coal gasi9cation, petroleum re9ning, and hydrogenation of fats and oils, nickel
is a potential ground and surface water pollutant. There is currently no legal limit on
the amount of nickel in drinking water. Nickel has not been found to potentially cause
health e=ects from acute exposures at levels below 0:1 mg=l. USEPA (2001) contains
various fact sheets about this and other contaminants. We will investigate estimation of
the upper quantiles of a data set of nickel concentrations from four monitoring wells.
The data set appears in a guidance document on analysis of ground-water monitoring
data (USEPA, 1992) and is discussed by Millard (1998).

The data set consists of n=20 nickel concentrations in parts per billion. We use these
data, which appear in Table 12 along with some summary measures, for illustrative
purposes. Millard (1998) considered F to only contain the log-normal distribution.
We will enlarge F to include log-logistic and log-double exponential families. Table
13 displays the values of the MLE, log likelihood, and three estimated quantiles for
all three distributions. The model with the largest likelihood is log-normal. Note that
none of the listed distributions are rejected at a 05% con9dence level. The log of the
likelihoods are very close. Anderson–Darling test for normality of ln(nickel) produces
a p-value in excess of 0.25. The same test for a logistic and double exponential
distributions produce p-values 0.15. There seems to be some uncertainty about the
underlying model.

Estimated quantiles based on the tail-exponential method corresponding to a 10, and
a 20 percent tail proportion also appear in Table 13. The estimates vary substantially for
each value of p. The exponential method leads to estimated quantiles that are smaller
than the ones obtained under parametric models. As there is considerable uncertainty
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Table 13
Summary of 9tting distributions to nickel concentrations and the estimated upper quantiles

Distribution Parameter MLE Log Estimated quantiles

likelihood p= 0:95 p= 0:99 p= 0:999

L-logistic (a; b) (3:94; 1:01) −118:37 1032.7 5527.1 57905.7
L-normal (�; !) (3:91; 1:75) −118:01 903.7 2990.2 11433.8
Log-DE (a; b) (4:05; 1:39) −118:9 1426.9 13487.2 335396.1
TE method r = 0:20 761.0 1340.4 2169.3
TE method r = 0:10 724.60 1064.9 1551.9

about an e=ective model, we believe one should utilize the estimates under di=erent
models to draw conclusions. Estimates under the log-double exponential model are
substantially larger than all other estimates. The estimates under the log-normal and
log-logistic distributions are comparable for p = 0:95, but di=er substantially for p =
0:999. In this example, one might consider an interval at the 95th(99th) percentile
ranging from the log-normal estimates (903.7)(2990.2) to (1032.2)(5527.1) from the
log-logistic model. A formal con9dence interval would be much larger.

6. Summary and recommendations

In this paper, we considered the accuracy of upper and extreme tail estimates of three
right skewed distributions under model and parameter uncertainty. We used the criteria
of bias and root mean squared error in order to assess the accuracy of the estimates.
The distributions considered are log-transformation of three well-known and symmet-
ric distributions, the log-normal, log-logistic and log-double exponential distributions.
We examined and compared performances of the MLE and non-parametric estimators
based on the empirical or a quasi-empirical quantile function (tail-exponential method).
We considered four cases that are encountered in practice. In particular, we considered
the cases where (i) the model is correctly speci9ed, (ii) the model is mis-speci9ed,
(iii) the best model is selected using the data, and (iv) no form is assumed for the
model.

In practice it is important to report standard errors or con9dence intervals along with
the point estimates to provide information about the reliability of the point estimates.
Thus, the e=ects of model mis-speci9cation on the width and coverage probability of
con9dence intervals deserve further investigation. For a given dataset, the true (correct)
model is unknown and its analysis should be guided by (i) identi9cation of a reasonable
model and (ii) the robustness of the proposed methodology. We should know how an
analysis based on an assumed model perform when it di=ers from the true model.
Identi9cation of a useful and e=ective model is easier for large datasets. For smaller
datasets, one needs to rely on more robust methods. Fully non-parametric methods are
robust, but may not be very eGcient for some models. It is useful, therefore, to use
a method that works well for a class of suGciently realistic models. In this paper we
have studied the robustness of estimates of upper and extreme percentiles when the
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true model is either log-normal, log-logistic or log-double exponential, all of which are
symmetric location-scale families on the log scale.

Generally speaking, when the model is speci9ed correctly, the accuracy of the es-
timators increase as the sample size increases and=or the CV decreases and=or p de-
creases. Under model mis-speci9cation, we observed the following. The assumption of
log-normality when the true distribution is log-logistic does not appear to have a ma-
jor e=ect on the estimates of upper and extreme quantiles. The mis-speci9cation of a
log-double exponential by a log-normal or log-logistic is fairly innocuous for estimating
upper percentiles from small or moderate sized data sets but become quite noticeable
for larger samples. Considering e=ects of all the incorrect speci9cations of a model, we
conclude that when the sample size is not very large, the assumption of log-normality
is relatively harmless for estimating the upper percentiles. The extreme percentiles were
diGcult to reliably estimate in modest sized samples for all three distributions. When
the sample size is large, signi9cant biases result from assuming an incorrect model. In
such cases, however, it is much easier to identify the correct model using goodness of
9t tests.

When the size of the sample is large we should use the data to select a model,
and then estimate the quantiles based on the selected model. For smaller sample sizes
it is diGcult to identify the correct model and hence one cannot rely on the esti-
mates derived under the selected model. In such cases, one should try to choose a
model by examining the subject matter and related studies. But, if one has consid-
erable uncertainty about the correct model, we believe it is helpful to obtain mul-
tiple estimates using di=erent methods. For moderate sample sizes, the MLE under
log-normal assumption, and the selection estimates appear to be two reasonable al-
ternatives. Considering the non-parametric estimators, the tail exponential approach
works fairly well for log-normal and log-logistic distributions, especially when the
CV is large. Unfortunately, it does not work well for log-double exponential distri-
bution. For small sample sizes, selection estimates are unreliable, especially for large
p. For estimating upper and extreme quantiles based on a small sample (n6 30),
we suggest reporting the tail exponential estimates, and the MLE under log-normal
assumption.

The coeGcient of variation has a great impact on the results in all four situations.
Even when the parent distribution is identi9ed a priori, the extreme upper tail esti-
mates are not accurate at small sample sizes and large values of CV. Caution must be
exercised when identifying a distribution a priori as model mis-speci9cation can result
in high bias and mean squared error at large values of CV. Large values of CV also
impact the identi9cation of the correct model. Estimates based on the selection method
may be suspect for small sample sizes and high values of CV. Large sample sizes are
necessary to reduce the mis-classi9cation rates.
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